
RELATIONS



CHAPTER SUMMARY
▪ Relations and Their Properties
▪ n-ary Relations and Their Applications (not currently included in 

overheads)
▪ Representing Relations
▪ Closures of Relations (not currently included in  overheads)
▪ Equivalence Relations
▪ Partial Orderings



RELATIONS AND 
THEIR PROPERTIES
Section 9.1



SECTION SUMMARY
▪ Relations and Functions
▪ Properties of Relations
▪ Reflexive Relations
▪ Symmetric and Antisymmetric Relations
▪ Transitive Relations

▪ Combining Relations



BINARY RELATIONS
   Definition: A binary relation R from a set A to a set B is a subset 

R ⊆ A × B.
    Example:
▪ Let A = {0,1,2} and B = {a,b} 
▪ {(0, a), (0, b), (1,a) , (2, b)} is a relation from A to B. 
▪ We can represent relations from a set A to a set B graphically or 

using a table:

Relations are more general than 
functions. A function is a relation 
where exactly one element of B is 
related to each element of A. 



BINARY RELATION ON A SET
   Definition: A binary relation R on a set A is a subset of A × A or a 

relation from A to A.
   Example:
▪ Suppose that    A = {a,b,c}. Then R = {(a,a),(a,b), (a,c)} is a relation on A. 
▪ Let  A = {1, 2, 3, 4}. The ordered pairs in the relation                  R  = {(a,b) | 

a divides b} are
     (1,1), (1, 2), (1,3), (1, 4), (2, 2), (2, 4), (3, 3), and  (4, 4).



BINARY RELATION ON A SET 
(CONT.)

    Question: How many relations are there on a set A? 

Solution:  Because a relation on A is the same thing 
as a subset of A ⨉ A, we count the subsets of A × A. 
Since  A × A has n2 elements when A has n elements, 
and a set with m elements has 2m subsets, there are         
subsets of  A × A. Therefore,  there are        relations 
on a set A.



BINARY RELATIONS ON A SET 
(CONT.)
   Example: Consider these relations on the set of integers:

R1 = {(a,b) | a ≤ b},                            R4 = {(a,b) | a = b},
R2 = {(a,b) | a > b},                            R5 = {(a,b) | a = b + 1},
R3 = {(a,b) | a = b  or a = −b},         R6 = {(a,b) | a + b ≤ 3}.

Which of these relations contain each of the pairs
                          
           (1,1), (1, 2), (2, 1), (1, −1), and (2, 2)?

    Solution: Checking the conditions that define each relation, we see 
that the pair (1,1) is in R1, R3, R4 , and R6: (1,2) is in R1 and R6: (2,1) is in 
R2, R5, and R6: (1, −1) is in R2, R3, and R6 : (2,2) is in R1, R3, and R4.

Note that these relations are on an infinite set and each of these relations is an 
infinite set.



REFLEXIVE RELATIONS
   Definition: R is reflexive iff (a,a) ∊ R for every element       a ∊ A. 

Written symbolically, R is reflexive if and only if 
           ∀x[x∊U ⟶ (x,x) ∊ R]

   Example: The following relations  on the integers are reflexive:
R1 = {(a,b) | a ≤ b},
R3 = {(a,b) | a = b  or a = −b},
R4 = {(a,b) | a = b}.
The following relations are not reflexive:
R2 = {(a,b) | a > b}  (note that  3 ≯ 3),
R5 = {(a,b) | a = b + 1} (note that  3 ≠3 + 1),
R6 = {(a,b) | a + b ≤ 3}  (note that 4  + 4 ≰ 3).

If A = ∅  then the empty relation is 
reflexive vacuously. That is the empty 
relation on an empty set is reflexive! 



SYMMETRIC RELATIONS
   Definition: R is symmetric iff (b,a) ∊ R whenever (a,b) ∊ R for all 

a,b ∊ A. Written symbolically, R is symmetric if and only if 
       ∀x∀y [(x,y) ∊R ⟶ (y,x) ∊ R]

   Example: The following relations  on the integers are 
symmetric:
R3 = {(a,b) | a = b  or a = −b},
R4 = {(a,b) | a = b},
R6 = {(a,b) | a + b ≤ 3}.
The following are not symmetric:
R1 = {(a,b) | a ≤ b} (note that 3 ≤ 4, but 4 ≰ 3),
R2 = {(a,b) | a > b}  (note that 4 > 3, but 3 ≯ 4),
R5 = {(a,b) | a = b + 1} (note that 4 = 3 + 1, but 3 ≠4 + 1).



ANTISYMMETRIC RELATIONS
   Definition:A relation R on a set A such that for all   a,b ∊ A  if (a,b) ∊ R 

and (b,a) ∊ R, then a = b  is called antisymmetric. Written 
symbolically, R is antisymmetric if and only if 
∀x∀y [(x,y) ∊R ∧ (y,x) ∊ R ⟶ x = y]

▪ Example: The following relations  on the integers are antisymmetric:
R1 = {(a,b) | a ≤ b},
R2 = {(a,b) | a > b},
R4 = {(a,b) | a = b},
R5 = {(a,b) | a = b + 1}.
The following relations are not antisymmetric:
R3 = {(a,b) | a = b  or a = −b} 
                    (note that both (1,−1) and (−1,1) belong to R3),
R6 = {(a,b) | a + b ≤ 3} (note that both (1,2) and (2,1) belong to R6).

For any integer, if a a ≤ b and 
a ≤ b , then a = b. 



TRANSITIVE RELATIONS
   Definition: A relation R on a set A is called transitive if whenever 

(a,b) ∊ R and (b,c) ∊ R, then (a,c) ∊ R, for all a,b,c ∊ A. Written 
symbolically, R is transitive if and only if 
      ∀x∀y ∀z[(x,y) ∊R ∧ (y,z) ∊ R ⟶ (x,z) ∊ R ]

▪ Example: The following relations  on the integers are transitive:
R1 = {(a,b) | a ≤ b},
R2 = {(a,b) | a > b},
R3 = {(a,b) | a = b  or a = −b},
R4 = {(a,b) | a = b}.
The following are not transitive:
 R5 = {(a,b) | a = b + 1} (note that both (3,2) and (4,3) belong to R5, but not 

(3,3)),
 R6 = {(a,b) | a + b ≤ 3} (note that both (2,1) and (1,2) belong to R6, but not 

(2,2)).

For every integer, a ≤ b 
 and b ≤ c, then b ≤ c.    



COMBINING RELATIONS
▪ Given two relations R1 and R2, we can combine them using basic 

set operations to form new relations such as R1 ∪ R2, R1 ∩ R2, R1 
− R2, and R2 − R1.
▪ Example: Let A = {1,2,3} and B = {1,2,3,4}. The relations R1 = 

{(1,1),(2,2),(3,3)} and                              R2 = {(1,1),(1,2),(1,3),(1,4)} 
can be combined using basic set operations to form new 
relations:

R1 ∪ R2 ={(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)} 
R1 ∩ R2 ={(1,1)} R1 − R2 ={(2,2),(3,3)} 

R2 − R1 ={(1,2),(1,3),(1,4)} 



COMPOSITION
   Definition:  Suppose
▪ R1 is a relation from a set A to a set B.
▪ R2 is a relation from B to a set C.

   Then the composition (or composite) of R2  with R1, is a relation 
from A to C where
▪ if (x,y) is a member of R1  and (y,z)  is a member of R2, then (x,z) is a 

member of R2∘ R1.



REPRESENTING THE  
COMPOSITION OF A RELATION
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POWERS OF A RELATION
   Definition:  Let R be a binary relation on A. Then the powers Rn 

of the relation R can be defined inductively by:
▪ Basis Step: R1 = R
▪ Inductive Step:  Rn+1 = Rn ∘ R
(see the slides for Section 9.3 for further insights)

   The powers of a transitive relation are subsets of the 
    relation. This is established by the following theorem:
    Theorem 1: The relation R on a set A is transitive iff                 Rn 

⊆ R for n = 1,2,3 ….
   (see the text for a proof via mathematical induction)



REPRESENTING 
RELATIONS
Section 9.3



SECTION SUMMARY
▪ Representing Relations using Matrices
▪ Representing Relations using Digraphs



REPRESENTING RELATIONS 
USING MATRICES
▪ A relation between finite sets can be represented using a zero-one 

matrix. 
▪ Suppose R is a relation from A = {a1, a2, …, am} to                         B = {b1, 

b2, …, bn}.
▪ The elements of the two sets can be listed in any particular arbitrary 

order. When A = B, we use the same ordering. 

▪ The relation R is represented by the matrix                                         MR 
= [mij], where

▪ The matrix representing R has a 1 as its (i,j) entry when ai is related 
to bj and a 0 if  ai is not related to bj. 



EXAMPLES OF 
REPRESENTING RELATIONS 
USING MATRICES
   Example 1: Suppose that A = {1,2,3} and B = {1,2}. Let  R be  the 

relation from A to B containing (a,b) if a ∈ A,    b ∈  B, and a > b. 
What is the matrix representing R  (assuming the ordering of 
elements is the same as the increasing numerical order)?

   Solution: Because R = {(2,1), (3,1),(3,2)}, the matrix is



EXAMPLES OF 
REPRESENTING RELATIONS 
USING MATRICES (CONT.)
   Example 2: Let A = {a1,a2, a3} and B = {b1,b2, b3,b4, b5}. Which 

ordered pairs are in the relation R represented by the matrix

    Solution: Because R  consists of those ordered pairs (ai,bj) with 
mij = 1, it follows that:

          R = {(a1, b2), (a2, b1),(a2, b3), (a2, b4),(a3, b1), {(a3, b3), (a3, b5)}. 



MATRICES OF RELATIONS ON 
SETS
▪ If R is a reflexive relation, all the elements on the main diagonal 

of MR are equal to 1.

▪  R is a symmetric relation, if and only if mij = 1 whenever mji = 1. 
R is an antisymmetric relation, if and only if mij = 0  or mji = 0 
when  i≠ j. 



EXAMPLE OF A RELATION ON 
A SET
   Example 3: Suppose that the relation R on a set is represented 

by the matrix

   Is R reflexive, symmetric, and/or antisymmetric?
   Solution: Because all the diagonal elements are equal to 1, R is 

reflexive. Because MR is symmetric, R is symmetric and not 
antisymmetric because both m

1,2
 and m2,1 are 1. 



REPRESENTING RELATIONS 
USING DIGRAPHS
   Definition: A directed graph, or digraph, consists of a set V of vertices (or 

nodes) together with a set E of ordered pairs of elements of V called edges 
(or arcs). The vertex a is called the initial vertex of the edge (a,b), and the 
vertex b is called the terminal vertex of this edge.
▪ An edge of the form (a,a) is called a loop.  

    
    Example 7:  A drawing of the directed graph with vertices a, b, c, and d, 

and edges   (a, b), (a, d), (b, b), (b, d), (c, a), (c, b), and (d, b) is shown here.

   



EXAMPLES OF DIGRAPHS 
REPRESENTING RELATIONS
  Example 8: What are the ordered pairs in the relation 
   represented by this directed graph?

    Solution: The ordered pairs in the relation are

   (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3),        
(4, 1),  and (4, 3)



DETERMINING WHICH 
PROPERTIES A RELATION HAS 
FROM ITS DIGRAPH

   
▪ Reflexivity: A loop must be present at all vertices in the graph.
▪ Symmetry: If  (x,y) is an edge, then so is (y,x).
▪ Antisymmetry: If (x,y) with x ≠ y is an edge, then (y,x) is not an edge. 
▪ Transitivity: If (x,y) and (y,z) are edges, then so is (x,z). 



 

• Reflexive? No, not every vertex has a loop
• Symmetric? Yes  (trivially), there is no edge from  one vertex to another
• Antisymmetric? Yes  (trivially), there is no edge from one vertex
                 to another
• Transitive? Yes, (trivially) since there is no edge from one vertex to another

a

dc

b

Determining which Properties a 
Relation has from its Digraph – 
Example 1



• Reflexive? No, there are no loops
• Symmetric? No, there is an edge from a to b, but not from b to a
• Antisymmetric? No, there is an edge from d to b and b to d 
• Transitive? No, there are edges from a to b and from b to d, 
                 but  there is no edge from a to d

a b

c d

Determining which Properties a 
Relation has from its Digraph – 
Example 2



Reflexive? No, there are no loops
Symmetric?  No, for example, there is no edge from c to a 
Antisymmetric? Yes, whenever there is an edge from one
         vertex  to another, there is not one going back  
Transitive? No, there is no edge from a to b 

a

dc

b

Determining which Properties a 
Relation has from its Digraph – 
Example 3



• Reflexive? No, there are no loops
• Symmetric? No, for example, there is no edge from d to a 
• Antisymmetric? Yes, whenever there is an edge from one vertex
                  to another, there is not one going back  
• Transitive? Yes (trivially), there  are no two edges where the first
                  edge ends at the vertex where the second edge begins
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Determining which Properties a 
Relation has from its Digraph – 
Example 4



EXAMPLE OF THE POWERS OF A 
RELATION

a b

cd
R

a b

cd
R2

a b

cd R3

a b

cd R4

The pair (x,y) is in  Rn  if there is a path of length n from x to y  in R
             (following the direction of the arrows). 



EQUIVALENCE 
RELATIONS
Section 9.5



SECTION SUMMARY
▪ Equivalence Relations
▪ Equivalence Classes
▪ Equivalence Classes and Partitions



EQUIVALENCE RELATIONS
   Definition 1:  A relation on a set A is called an equivalence 

relation if it is reflexive, symmetric, and transitive. 

   Definition 2:  Two elements a, and b that are related by an 
equivalence relation are called  equivalent.  The notation a ∼ b 
is often used to denote that a and b are equivalent elements 
with respect to a particular equivalence relation.



STRINGS
   

     Example: Suppose that R is the relation on the set of strings of English 
letters such that aRb if and only if l(a) = l(b), where l(x) is the length of 
the string x. Is R an equivalence relation? 

    Solution: Show that all of the properties of an equivalence relation hold.
▪ Reflexivity: Because l(a) = l(a), it follows that aRa for all strings a. 
▪ Symmetry: Suppose that aRb.  Since l(a) = l(b), l(b) = l(a) also holds  

and bRa. 
▪ Transitivity: Suppose that aRb and bRc. Since l(a) = l(b),and l(b) = l(c), 

l(a) = l(a) also holds and aRc. 

         



CONGRUENCE MODULO M
   Example:  Let m be an integer with m > 1. Show that the relation 
         R = {(a,b) | a ≡ b (mod m)} 
    is an equivalence relation on the set of integers.

   Solution:  Recall that a ≡ b (mod m) if and only if m  divides a − b.
▪ Reflexivity:  a ≡ a (mod m) since a − a = 0 is divisible by m since              0 

= 0 ∙ m.
▪ Symmetry:  Suppose that a ≡ b (mod m). Then a − b is divisible by m, and 

so a − b = km, where k is an integer. It follows that b − a = (− k) m, so b ≡ 
a (mod m). 

▪ Transitivity: Suppose that a ≡ b (mod m) and b ≡ c (mod m). Then m 
divides both a − b and b − c. Hence, there are integers k and l with           a 
− b = km  and b − c = lm. We obtain by adding the equations: 

               a − c = (a − b)  + (b − c)  = km + lm = (k + l) m.
    Therefore, a ≡ c (mod m).



DIVIDES
   Example:  Show that the “divides” relation on the set of positive 

integers is not an equivalence relation.
   Solution: The properties of reflexivity, and transitivity do hold, but 

there relation is not transitive. Hence, “divides” is not an equivalence 
relation.
▪ Reflexivity:  a ∣ a for all a. 
▪ Not Symmetric: For example, 2 ∣ 4, but 4 ∤ 2. Hence, the relation is not 

symmetric. 
▪ Transitivity:  Suppose that a divides b and b divides c. Then there are 

positive integers k and l such that b = ak and c = bl. Hence, c = a(kl), so a 
divides c. Therefore, the relation is transitive. 

         



EQUIVALENCE CLASSES
     Definition 3:  Let R be an equivalence relation on a set A.  The set of all elements that are 

related to an element a of A is called the  equivalence class of a. The equivalence class of a 
with respect to R is denoted by [a]R.  

     When only one relation is under consideration, we can write [a], without the subscript R,  
for this equivalence class. 

 
      Note that  [a]R = {s|(a,s) ∈ R}.

▪ If  b ∈ [a]R, then b is called a representative of this equivalence class. Any element of a class 
can be used as a representative of the class. 

▪ The equivalence classes of the relation congruence modulo m are called the congruence 
classes modulo m. The congruence class of an integer a modulo m is denoted by [a]m, so 
[a]m = {…, a−2m, a−m, a+2m, a+2m, … }. For example, 

   [0]4 = {…, −8, −4 , 0, 4 , 8 , …}                        [1]4 = {…, −7, −3 , 1, 5 , 9 , …}

          [2]4 = {…, −6, −2 , 2, 6 , 10 , …}                      [3]4 = {…, −5, −1 , 3, 7 , 11 , …}



EQUIVALENCE CLASSES AND 
PARTITIONS
   Theorem  1:  let R be an equivalence relation on a set A.  These 

statements for elements a and b of A are equivalent: 
    (i)   aRb
    (ii)  [a] = [b]
    (iii) [a] ∩ [b] = ∅
Proof: We show that (i) implies (ii). Assume that aRb. Now suppose that c 

∈ [a]. Then aRc. Because aRb and R is symmetric, bRa. Because R is 
transitive and bRa and aRc, it follows that bRc. Hence, c ∈ [b]. 
Therefore, [a]⊆ [b].  A similar argument (omitted here) shows that 
[b]⊆ [a]. Since [a]⊆ [b] and [b]⊆ [a],  we have shown that [a] = [b].

(see Zybooks for proof  that (ii) implies (iii) and (iii) implies 
(i))



PARTITION OF A SET
   Definition: A partition of a set S is a collection of disjoint 

nonempty subsets of S that have S as their union. In other 
words, the collection of subsets Ai, where i ∈ I (where I is an 
index set), forms a partition of S if and only if
▪ Ai ≠ ∅ for i ∈ I,
▪ Ai ∩ Aj=∅ when i ≠ j,
▪ and 

A Partition of a Set



AN EQUIVALENCE RELATION 
PARTITIONS A SET
▪ Let R be an equivalence relation on a set A.  The union of all the 

equivalence classes of R is all of A, since  an element a of A is in 
its own equivalence class [a]R.  In other words, 

   

▪ From Theorem 1, it follows that these equivalence classes are 
either equal or disjoint, so [a]R ∩[b]R=∅ when [a]R ≠ [b]R.
▪ Therefore, the equivalence classes form a partition of A, 

because they split A into disjoint subsets. 



AN EQUIVALENCE RELATION 
PARTITIONS A SET 
(CONTINUED)
    Theorem 2: Let R be an equivalence relation on a set S.  Then the 

equivalence classes of R form a partition of S. Conversely, given a partition 
{Ai | i ∈  I} of the set S, there is an equivalence relation R that has the sets Ai, i ∈ I, as its equivalence classes. 

     Proof: We have already shown the first part of the theorem.
     For the second part, assume that {Ai | i ∈ I} is a partition of S. Let R be the 

relation on S consisting of the pairs (x, y) where x and y belong to the same 
subset Ai in the partition. We must show that R satisfies the properties of an 
equivalence relation.
▪ Reflexivity: For every a ∈ S, (a,a) ∈ R, because a is in the same subset as itself. 
▪ Symmetry: If (a,b) ∈ R, then b and a are in the same subset of the partition, so 

(b,a) ∈ R. 
▪ Transitivity: If (a,b) ∈ R and  (b,c) ∈ R, then a and b are in the same subset of the 

partition, as are  b and c. Since the subsets are disjoint and b belongs to both, 
the  two subsets of the partition must be identical. Therefore, (a,c) ∈ R since a 
and c belong to the same subset of the partition. 

   



PARTIAL 
ORDERINGS
Section 9.6



SECTION SUMMARY
▪ Partial Orderings and Partially-ordered Sets
▪ Lexicographic Orderings
▪ Hasse Diagrams 
▪ Lattices (not currently in overheads)
▪ Topological Sorting (not currently in overheads)



PARTIAL ORDERINGS
   Definition 1: A relation R on a set S is called a partial ordering, 

or partial order, if it is reflexive, antisymmetric, and transitive. A 
set together with a partial ordering R is called a partially 
ordered set, or poset, and is denoted by (S, R). Members of S are 
called elements of the poset. 



PARTIAL ORDERINGS 
(CONTINUED)
   Example 1: Show that the “greater than or equal” relation (≥) is 

a partial ordering on the set of integers.
▪ Reflexivity:  a ≥ a for every integer a.
▪ Antisymmetry: If a ≥ b and b ≥ a , then a = b.
▪ Transitivity: If a ≥ b and b ≥ c , then a ≥ c.

These properties all follow from the order axioms for the 
integers. (See Appendix 1).



PARTIAL ORDERINGS 
(CONTINUED)
   Example 2: Show that the divisibility relation (∣) is a partial 

ordering on the set of integers.
▪ Reflexivity: a ∣ a for all integers a. (see Example 9 in Section 9.1) 
▪ Antisymmetry: If a and b are positive integers with a | b and b | a, 

then a = b. (see Example 12 in Section 9.1)
▪ Transitivity: Suppose that a divides b and b divides c. Then there are 

positive integers k and l such that b = ak and c = bl. Hence, c = a(kl), 
so a divides c. Therefore, the relation is transitive. 

▪ (Z+, ∣) is a poset.



PARTIAL ORDERINGS 
(CONTINUED)
   Example 3: Show that the inclusion relation (⊆) is a partial 

ordering on the power set of a set S.
▪ Reflexivity: A ⊆ A  whenever A  is a subset of S. 
▪ Antisymmetry: If A and B are positive integers with        A ⊆ B and B ⊆ 

A, then A = B.
▪ Transitivity: If A ⊆ B and B ⊆ C, then A ⊆ C.

The properties all follow from the 
definition of set inclusion.



COMPARABILITY
    Definition 2: The elements a and b of a poset (S,≼ ) are comparable if 

either a ≼ b or b ≼ a. When a and b are elements of S so that  neither          a 
≼ b nor b ≼ a, then a and b are called incomparable.

     Definition 3: If  (S,≼ ) is a poset and every two elements of S are 
comparable, S is called a totally ordered or linearly ordered set, and ≼ is 
called a total order or a linear order.  A totally ordered set is also called a 
chain. 

    Definition 4: (S,≼ ) is a well-ordered set if it is a poset such that ≼ is a total 
ordering and every nonempty subset of S has a least element. 

 

The symbol ≼ is used to  denote the relation in 
any poset. 



LEXICOGRAPHIC ORDER
   Definition: Given two posets (A1,≼1) and (A2,≼2), the lexicographic 

ordering  on A1 ⨉ A2  is defined by specifying that  (a1, a2) is less than 
(b1,b2), that is,

                 (a1, a2) ≺ (b1,b2), 
    either if a1 ≺1 b1 or if a1 = b1 and a2 ≺2 b2.
▪ This definition can be easily extended to a lexicographic ordering 

on strings (see text).
    Example:  Consider strings of lowercase English letters. A 

lexicographic ordering can be defined using the ordering of the 
letters in the alphabet. This is the same ordering as that used in 
dictionaries.
▪ discreet ≺ discrete, because these strings differ in the seventh position 

and e ≺ t. 
▪ discreet ≺ discreetness, because the first eight letters agree, but the 

second string is longer. 



HASSE DIAGRAMS
   Definition: A Hasse diagram is a visual representation of a partial 

ordering that leaves out edges that must be present because of the 
reflexive and transitive properties.

    
   

   A partial ordering is shown in (a) of the figure above. The loops due 
to the reflexive property are deleted in (b). The edges that must be 
present due to the transitive property are deleted in (c). The Hasse 
diagram for the partial ordering (a), is depicted in (c). 



PROCEDURE FOR 
CONSTRUCTING A   HASSE 
DIAGRAM
▪ To represent a finite poset (S,≼ )  using a Hasse diagram, start 

with the directed graph of the relation:
▪ Remove the loops (a, a) present at every vertex due to the reflexive 

property.
▪ Remove all edges (x, y) for which there is an element       z ∈ S such 

that x ≺ z and z ≺ y. These are the edges that must be present due to 
the transitive property.
▪ Arrange each edge so that its initial vertex is below the terminal 

vertex. Remove all the arrows, because all edges point upwards 
toward their terminal vertex. 


